Cell-based assays for identification of novel double-strand break-inducing agents.

نویسندگان

  • Heather M Dunstan
  • Catherine Ludlow
  • Sondra Goehle
  • Michelle Cronk
  • Philippe Szankasi
  • David R H Evans
  • Julian A Simon
  • John R Lamb
چکیده

BACKGROUND We are developing cell-based assays to identify anticancer agents that are selectively toxic to cells with defined mutations. As a test, we used a three-stage strategy to screen compounds from the National Cancer Institute's repository for agents that are selectively toxic to double-strand break repair-deficient yeast cells. METHODS Compounds identified in the screen were further analyzed by use of yeast and vertebrate cell-based and in vitroassays to distinguish between topoisomerase I and II poisons. RESULTS Of the more than 85 000 compounds screened, 126 were selectively toxic to yeast deficient in DNA double-strand break repair. Eighty-seven of these 126 compounds were structurally related to known topoisomerase poisons, and 39 were not. Twenty-eight of the 39 were characterized, and we present data for eight of the compounds. Among these eight compounds, we identified two novel topoisomerase II poisons (NSC 327929 and NSC 638432) that were equipotent to etoposide in biochemical tests and in cells, five (NSC 63599, NSC 65601, NSC 380271, NSC 651646, and NSC 668370) with topoisomerase I-dependent toxicity in yeast that induced DNA damage and toxicity in mammalian cells, and one (NSC 610898) that directly bound to DNA and induced strand breaks. CONCLUSIONS Cell-based assays can be used to identify molecules that are selectively toxic to cells with a predetermined genetic background, including mutations in genes involved in the cell cycle and its checkpoints, for which there are currently no selectively toxic compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells

Introduction H istone deacetylase inhibitors (HDIs), as  radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...

متن کامل

Induction of Apoptosis on K562 Cell Line and Double Strand Breaks on Colon Cancer Cell Line Expressing High Affinity Receptor for Granulocyte Macrophage-Colony Stimulating factor (GM-CSF)

Background: Immunotoxins are comprised of both the cell targeting and the cell killing moieties. We previously established a new immunotoxin, i.e. Shiga toxin granulocyte macrophage-colony stimulating factor (StxA1-GM-CSF), comprises of catalytic domain of Stx, as a killing moiety and GM-CSF, as a cell targeting moiety. In this study, the ability of the immunotoxin to induce apoptosis and dou...

متن کامل

The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom

Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...

متن کامل

Molecular Effects of Atmospheric Pressure Plasma Jet on the Double-Stranded DNA

Introduction The aim of this study was toinvestigate the sterilization potential of atmospheric pressure plasma jet (APPJ) and interactions of this technology with double-stranded DNA using the polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) techniques. Materials and Methods The plasma jet was produced through a high voltage sinusoidal power supplyusing a mixt...

متن کامل

The DNA double-stranded break repair protein endo-exonuclease as a therapeutic target for cancer.

DNA repair mechanisms are crucial for the maintenance of genomic stability and are emerging as potential therapeutic targets for cancer. In this study, we report that the endo-exonuclease, a protein involved in the recombination repair process of the DNA double-stranded break pathway, is overexpressed in a variety of cancer cells and could represent an effective target for developing anticancer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2002